Sums of Values of a Rational Function

نویسنده

  • BJORN POONEN
چکیده

Let K be a number field, and let f ∈ K(x) be a nonconstant rational function. We study the sets { n ∑ i=1 f(xi) : xi ∈ K − {poles of f} }

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Summability of Bivariate Rational Functions

We present criteria for deciding whether a bivariate rational function in two variables can be written as a sum of two (q-)differences of bivariate rational functions. Using these criteria, we show how certain double sums can be evaluated, first, in terms of single sums and, finally, in terms of values of special functions.

متن کامل

ALTERNATING EULER SUMS AND SPECIAL VALUES OF WITTEN MULTIPLE ZETA FUNCTION ATTACHED TO so(5)

Abstract. In this note we shall study the Witten multiple zeta function associated to the Lie algebra so(5) defined by Matsumoto. Our main result shows that its special values at nonnegative integers are always expressible by alternating Euler sums. More precisely, every such special value of weight w ≥ 3 is a finite rational linear combination of alternating Euler sums of weight w and depth at...

متن کامل

On the Average Value of Divisor Sums in Arithmetic Progressions

We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in pa...

متن کامل

Some results of 2-periodic functions by Fourier sums in the space Lp(2)

In this paper, using the Steklov function, we introduce the generalized continuity modulus and denethe class of functions Wr;kp;' in the space Lp. For this class, we prove an analog of the estimates in [1]in the space Lp.

متن کامل

A Rational Function Whose Integral Values Are Sums of Two Squares

A problem from the 1988 IMO asserts that for positive integers a and b the set of integral values assumed by (a + b)/(ab + 1) is exactly the set of positive squares. We present an extension of this result involving a rational function in three variables whose integral values consist of precisely those numbers expressible as a sum of two positive squares. This immediately implies that a certain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002